
The OAI-PMH Static Repository and Static Repository
Gateway

Patrick Hochstenbach
Los Alamos National Laboratory

Research Library, Prototyping Team
 Los Alamos, NM 87545-1362

1 (505) 6674448

hochsten@lanl.gov

Henry Jerez
Los Alamos National Laboratory

Research Library, Prototyping Team
Los Alamos, NM 87545-1362

1 (505) 6674448

hjerez@lanl.gov

Herbert Van de Sompel
Los Alamos National Laboratory

Research Library, Prototyping Team
Los Alamos, NM 87545-1362

1 (505) 6674448

herbertv@lanl.gov

Abstract
Although the OAI-PMH specification is focused on making

it straightforward for data providers to expose metadata,

practice shows that in certain significant situations

deployment of OAI-PMH conformant repository software

remains problematic. In this paper, we report on research

aimed at devising solutions to further lower the barrier to

make metadata collections harvestable. We provide an in

depth description of an approach in which a data provider

makes a metadata collection available as an XML file with

a specific format – an OAI Static Repository – which is

made OAI-PMH harvestable through the intermediation of

software – an OAI Static Repository Gateway - operated by

a third party. We describe the properties of both

components, and provide insights in our experience with an

experimental implementation of a Gateway.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Standards; System issues

General Terms
Design, Experimentation, Standardization

Keywords
OAI-PMH, metadata harvesting

1. Introduction
Throughout the different stages that led to the release of

version 2 of the Open Archives Protocol for Metadata

Harvesting (OAI-PMH) [3, 4, 7, 13, 14, 15], a strong

emphasis has been put on devising a specification for

metadata harvesting that is straightforward to implement. It

is fair to state that, whenever a choice had to be made, the

consecutive specifications have favored making it easy for

data providers to expose their metadata collections through

the protocol instead of for service providers that harvest the

exposed metadata. The origin of that bias lies with the

Santa Fe Convention of the Open Archives Initiative [7]

that aimed at achieving a level of interoperability across

repositories of electronic preprints through metadata

harvesting.

Recognizing that existing preprint repositories were grass

root initiatives operating with quite limited resources, and

that new initiatives in that realm would probably operate

under similar modest circumstances for some time to come,

those involved in the discussions leading to the Santa Fe

Convention [13] decided in favor of ease of

implementation at the end of the preprint repositories. This

strategy was expected to make the barrier to actually

exposing metadata through the protocol as low as possible,

and eventually increases the impact of preprint-based

communication on the scholarly communication system

[2].

Nevertheless, for some data providers holding interesting

metadata collections, implementation of the protocol has

remained problematic. This was first recognized after the

release of version 1 of the OAI-PMH, in the context of the

Open Language Archives Community (OLAC) project

[10]. Several participants in that project wanted to

contribute – sometimes small but nevertheless important –

metadata collections to the OLAC environment but were

unable to do so because OLAC’s strategy for federating

distributed repositories was fully based on the OAI-PMH.

Implementation of the OAI-PMH was not feasible for

several OLAC participants, and the reasons ranged from

lack of technical expertise, to system administrators having

security concerns about operating an OAI-PMH gateway

against an enterprise database, to the cost of implementing

the protocol being disproportional to the size of the

metadata collection to be exposed.

Practice has shown that these problems exist beyond the

OLAC Community. In many cases, union catalog projects

include participants that are not in a position to operate

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

JCDL ’03, May 1-2, 2003, Houston, Texas.

Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:09 from IEEE Xplore. Restrictions apply.

elaborate software environments, and therefore currently

rely on tools such as ftp to add their collection to the

central catalog. Also, ideas have been brought forward to

trigger duplication of new content in the LoCKSS

framework [9] by exposing metadata about that content

through the OAI-PMH, i.e. addition of metadata to an OAI-

PMH conformant repository operated by publisher would

trigger the process of gathering the full-content described

by the added metadata. It is anticipated that some smaller

publishers contributing to the LoCKSS environment will

not be able to collaborate in such an OAI-PMH triggered

scheme because the technical barrier is too high for them.

And, some organizations that are well known in the digital

library community make use of web-servers provided by

ISPs that do not allow the installation of third party

software. Therefore, these organizations cannot share the

metadata of their publications through the OAI-PMH.

So, it seems that – irrespective of the bias in the OAI-PMH

that favors ease of implementation for data providers – the

barrier to expose metadata through the OAI-PMH remains

too high in certain, non-marginal circumstances. Therefore,

we have conducted research to devise an approach that

further lowers the barrier to sharing metadata collections

through the OAI-PMH.

2. Directions Explored
The focus of our research was on delivering an OAI-PMH

solution for data providers that are not in a position to

operate special software in order to share their metadata

collections with harvesters. This focus immediately led to

devising solutions by which metadata collections are made

accessible as flat files, not databases. And, given that all

responses in the OAI-PMH are XML files, this focus

narrowed to finding a solution in which a data provider

uses an XML file as the container of its metadata

collection. Our research led into two quite distinct

directions:

• The autonomous data provider approach: In this

approach, data providers make an XML file that

adheres to an XML Schema created for this purpose

available on a Web server, and place an XSL style

sheet on that Web server to handle the responses to

incoming OAI-PMH requests. Because data providers

operating in this mode all use the same format for their

XML file, they share a single XSL style sheet. This

work led to the insight that, in order to be easily

deployable, native support of XSLT in the data

provider’s Web servers is required. Such support is

currently not available by default. Also,

experimentation revealed that an implementation of

this approach that solely relies on XSLT processing to

respond to OAI-PMH requests requires features that

are only available in XSL version 2. That specification

is currently in a W3C Working Draft status, and

conformant tools must be considered experimental.

Both insights led us to conclude that, while definitely

promising, this track was not mature for actual

deployment to our low-barrier target group.

• The dependent data provider approach: In this

approach, data providers make an XML file that

adheres to an XML Schema created for this purpose

available on a Web server, and rely on external, third-

party gateway software to make the data from that file

harvestable through the OAI-PMH. This track was

inspired by the ViDa [8] – Virtual Data Provider –

approach introduced by the OLAC Community to

remedy the problems described in the Introduction.

While the ViDa approach has properties that are

specific to the OLAC Community, and was created for

version 1 of the OAI-PMH, our research looked for a

generic approach to work in conjunction with version

2 of the OAI-PMH. Our work also paid considerable

attention to ensuring the accuracy of responses

delivered through a gateway to a harvester. Research

on this track led to a collaboration with Carl Lagoze,

Michael Nelson and Simeon Warner to specify an

Implementation Guideline for version 2 of the OAI-

PMH. At the time of writing, that Guideline is in its

alpha version. When testing of the specification is

completed, it will be officially released by the OAI

under the name “The OAI Static Repository and Static

Repository Gateway” [16]. Research on this track also

led to the creation of an experimental gateway. The

remainder of this paper reports on both.

3. The OAI Static Repository Model
The OAI Static Repository model provides a simple

approach for exposing relatively static and small

collections of metadata records through the OAI-PMH. The

Static Repository approach is targeted at data providers that

have metadata collections ranging in size between 1 and

5000 records and that are not in a position to host OAI-

PMH-compliant repository software. However, the model

assumes that these data providers do have access to the file

services of a standard, network-accessible Web server.

The OAI Static Repository model builds on two types of

components:

• The Static Repository - An XML file that is made

accessible by a data provider at a persistent network-

location. The XML file has a well-defined structure

and it contains information similar to that in OAI-PMH

responses. This includes metadata records and

supporting information required for the purpose of

harvesting via the OAI-PMH.

• The Static Repository Gateway – A network accessible

server, operated by a third party, that makes one or

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:09 from IEEE Xplore. Restrictions apply.

more Static Repositories harvestable through the OAI-

PMH. Due to the fact that a Static Repository Gateway

assigns a unique base URL to each such Static

Repository, harvesters can harvest Static Repository

information in exactly the same manner as they harvest

any other OAI-PMH Repository.

Figure 1. OAI Static Repository Model

Both the Static Repository and the Static Repository

Gateway are described in the remainder of this Section.

They are further clarified through Figure 1 and through the

example in the Appendix. The full details are available in

the OAI Implementation Guideline on OAI Static

Repositories and Static Repository Gateways [16].

3.1 The Static Repository
A Static Repository is an XML file that validates against a

W3C XML Schema [17] that uses XML elements from the

OAI-PMH XML Namespace [18]. The data provider makes

the XML file available at a persistent HTTP address. It is

anticipated that the data provider will create and update the

Static Repository by using an XML editor, or by regularly

exporting the status of a metadata collection from a

database as a Static Repository XML file. That XML file

has sections that contain the responses to the Identify and

the ListMetadataFormats OAI-PMH verbs. It also contains

one ListRecords section per Metadata Format supported by

the Static Repository.

Taking into account the nature of the environments in

which Static Repositories will be created and updated, and

aiming for ease of implementation of Static Repository

Gateway software, it was decided that Static Repositories

can not use optional notions of the OAI-PMH such as

“sets”, “deleted records” and “seconds-level datestamps”.

3.2 The Static Repository Gateway
A Static Repository Gateway (henceforth referred to as

Gateway) is a network-accessible server that makes a Static

Repository harvestable as an autonomous OAI-PMH

repository. In order to achieve this, the Gateway assigns a

unique base URL to each Static Repository that it makes

harvestable. That base URL is a specific concatenation of

the network-location of the Gateway itself, and the HTTP

address of the Static Repository. Knowing the specific

concatenation rules, data providers can construct the base

URL at which a given Gateway will make their Static

Repository harvestable. Data providers make their Static

Repository known to a Gateway by issuing an OAI-PMH

Identify request against the base URL resulting from the

concatenation exercise. A Gateway keeps track of all Static

Repositories that have “registered” in this manner, and

communicates the base URLs of those Static Repositories

to harvesters in a Friends [5] container embedded in every

Identify response it generates. This allows for dynamic

discovery of Static Repositories through a Gateway.

In order to guarantee that harvesters receive adequate

information when accessing a Static Repository through a

Gateway, the behavior of a Gateway is quite strictly

defined. The core rule guiding this behavior is that a

Gateway must always use the most recent version of a

Static Repository. In theory, this means that a Gateway

should fetch a Static Repository from its network-location

for every single harvesting request. However, a Gateway

can optimize its performance by caching Static

Repositories. When caching, a Gateway must perform a

freshness-test on the cached Static Repository by

comparing it with the version at the Static Repository

network-location before responding to harvesting requests.

It can do so by using a HTTP HEAD with an If-Modified-

Since header that contains the date of the cached version of

a Static Repository. Given the above freshness

requirements, the following three scenarios can occur:

(1) If the Static Repository is not accessible at its Static

Repository network-location when a Gateway performs this

freshness-test, it must respond to the harvesting request

with a HTTP status-code 504 (Gateway Timeout).

(2) If the Static Repository is accessible at its Static

Repository network-location when a Gateway performs this

freshness-test, and the freshness-test indicates that the

cached version is out-of-date, then it must fetch the Static

Repository from its Static Repository network-location:

• If delaying the response until this fetch from the Static

Repository is complete and it is processed, the

Gateway can respond to the harvesting request with a

HTTP status-code 503 (Service Unavailable). This

specifies a Retry-After period covering the estimated

time of fetching the Static Repository from its Static

Repository network-location, and validating it against

the Static Repository XML Schema.

• If the fetched version of the Static Repository does not

validate against the Static Repository XML Schema,

then the Gateway must respond to the harvesting

request with a HTTP status-code 502 (Bad Gateway).

It must not respond to the harvesting request using the

cached version of the Static Repository.

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:09 from IEEE Xplore. Restrictions apply.

• If the fetched version of the Static Repository does

validate against the Static Repository XML Schema,

then the Gateway must respond to the harvesting

request using the fetched version.

(3) If the Static Repository is accessible at its Static

Repository network-location when a Gateway performs this

freshness-test, and the result of the freshness-test indicates

that the cached version is the same as the version at the

Static Repository network-location, then the Gateway may

respond to the harvesting request by using the cached

version of the Static Repository.

4. A Gateway Implementation
As described in the Introduction, the aim of the Static

Repository specification is to make participation in an

OAI-PMH harvesting environment easier for data

providers. This is achieved by allowing data providers to

put metadata collections out as XML files that adhere to a

well-defined format. Data providers then rely on the

services of a Gateway to make the information in such

XML files harvestable through the OAI-PMH. Especially

due to the strictly defined behavior of Gateways imposed to

ensure accuracy of harvested data, the implementation of

conformant Gateway software seems not trivial. We set out

to create experimental Gateway software, to check the

feasibility of the OAI Static Repository specification, and –

by sharing our experiences in doing so through this paper –

to motivate third parties to create robust Gateway

implementations.

Our Gateway approach builds on four components:

• The OAI-PMH Interface – A CGI program that

accepts OAI-PMH requests targeted at Static

Repositories; performs the freshness-test of Cached

Static Repositories for incoming OAI-PMH requests;

delivers OAI-PMH responses in case a Cached Static

Repository was determined to be fresh; generates the

appropriate HTTP status-codes when the freshness-test

failed; and communicates the necessity of updating a

Cached version to the Daemon through the Lock Zone.

• The Cache – A file-system based storage space in

which Cached versions of individual Static

Repositories are held as separate GDBM databases [1].

• The Lock Zone - A file-system based storage space

that acts as a serving-hatch between the OAI-PMH

Interface and the Daemon. It holds Lock Files, each of

which contain information on a Static Repository that

needs to be fetched as a result of a failed freshness-

test, as well as on the actual status of the fetching

process.

• The Daemon – A daemon that continuously monitors

the Lock Zone; fetches Static Repositories when the

Lock Zone indicates that doing so is required; updates

the status of the fetching process in the Lock Files;

updates the Cache.

The remainder of this Section describes these components

and their interaction in more detail. That description is

further supported by Figure 2.

Figure 2. A Static Repository Gateway
Implementation

4.1 The OAI-PMH Interface
The OAI-PMH Interface consists of a front-end that ingests

OAI-PMH requests, checks those for syntactic validity and

responds with appropriate error messages in case requests

are invalid. It also passes on responses delivered to it by

the back-end of the OAI-PMH Interface, which in itself

consists of three components that are called in the listed

order:

• The Lock Management Component – Writes

information on Static Repositories for which the

Cached version is out-of-date to the Lock Zone.

• The Cache Management Component - Interacts with

the Cached Static Repositories.

• The HTTP Component – Performs the freshness-test of

Cached Static Repositories.

Valid incoming OAI-PMH requests targeted at a specific

Static Repository are initially handed over to the Lock

Management Component that checks whether a process of

caching the Static Repository is currently ongoing, and if

so what the status of that process is.

• In case such a process is indeed ongoing, the front-end

of the OAI-PMH Interface responds to the harvesting

request with an HTTP status-code of 503 (Service

Unavailable) specifying a Retry-After period. The

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:09 from IEEE Xplore. Restrictions apply.

Lock Management Component can derive such status

information from the appropriate Lock File in the Lock

Zone.

• If no such process is ongoing, control is handed over

to the Cache Management Component of the OAI-

PMH Interface.

Using a unique key derived from the HTTP address of the

targeted Static Repository as the entry into the Cache, the

Cache Management Component checks for the existence of

a Cached version of the Static Repository. The following

two scenarios can occur:

(1) If such a Cached version exists, then the Cache

Management Component checks the date/time of the

Cached version of that Static Repository. Next, the HTTP

Component issues an If-Modified-Since HTTP HEAD

request using the obtained date/time against the HTTP

address of the Static Repository.

• If doing so reveals that the Cache is fresh, the Cache

Management Component reads the appropriate

information from the Cached GDBM database for the

Static Repository, and hands that information over to

the front-end of the OAI-PMH Interface, which can

then respond to OAI-PMH request. Depending on

whether the Cache indicates that Static Repository is a

valid or invalid, the response will be a regular OAI-

PMH response containing data, or an HTTP status-

code 502 (Bad Gateway).

• If doing so reveals that the Cached version is out-of-

date, the Lock Management Component writes a Lock

File in the Lock Zone specifying the HTTP address of

the Static Repository that needs updating as well as the

current status of this fetch, which at this point is

“unprocessed”. Also, the front-end responds with an

HTTP status-code 503 (Service Unavailable),

specifying a Retry-After period that is a best guess of

the amount of time it may take to update the Cached

version. At this point, from the perspective of the

Gateway, the OAI-PMH request has been processed.

The harvester will need to re-issue the request after the

Retry-After period, in order to receive an OAI-PMH

response that contains actual data.

• If doing so is unsuccessful in that there is no response

to the If-Modified-Since HTTP HEAD request, then

the front-end responds with an HTTP status-code 504

(Gateway Timeout).

(2) If such a Cached version does not yet exist, the Lock

Management Component writes a Lock File, and the front-

end responds with an HTTP status-code of 503 (Service

Unavailable) specifying a Retry-After period.

4.2 The Cache
The Cache consists of individual GDBM databases, one per

Cached Static Repository. The filename of each GDBM

database is a unique key derived from the HTTP address of

the Static Repository. Its content consists of administrative

information such as date/time of first and most recent

caching of the Static Repository, and a processed version

of the Static Repository that makes responding to OAI-

PMH requests a matter of simply joining appropriate

portions of stored XML data obtained by deconstructing

the Static Repository XML file.

4.3 The Lock Zone
The Lock Zone is read/write accessible by both the Lock

Management Component of the OAI-PMH Interface and

the Daemon. When the freshness-test of a Cached version

of a Static Repository reveals that the Cached version is

out-of-date or not yet existing, the Lock Management

Component writes a Lock File in the Lock Zone stating the

HTTP address of that Static Repository, its name in the

Cache, as well as the “unprocessed” status of the process of

updating the Cached version. The Lock Zone is monitored

by the Daemon, which interprets a Lock File as an

instruction to fetch a Static Repository from its HTTP

address. As will be explained in the following Section, the

Daemon updates the status of a file in the Lock Zone as it

acts upon the fetching instruction; it eventually removes the

Lock File from the Lock Zone.

4.4 The Daemon
The Daemon continuously monitors the Lock Zone and

acts upon the Lock Files deposited there by the Lock

Management Component of the OAI-PMH Interface. The

Daemon itself consists of three components that are called

in the listed order:

• The Lock Management Component – Reads Lock

Files with “unprocessed” status; updates status

information of Lock Files as the process of

updating/writing the Cached version of the

corresponding Static Repository is ongoing; eventually

removes Lock Files from the Lock Zone.

• The HTTP Component – Fetches Static Repositories

from their network-location.

• The Cache Management Component – Replaces the

out-of-date Cached version of a Static Repository by

the newly fetched version or creates a Cached version

if no Cached version exists; writes a flag if the newly

fetched version is not a valid Static Repository.

The Daemon interprets each individual Lock File with a

status of “unprocessed” as an instruction to cache a fresh

version of the associated Static Repository. The refreshing

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:09 from IEEE Xplore. Restrictions apply.

process starts with the Daemon attempting to fetch the

Static Repository from its HTTP address.

• If fetching fails, the Daemon deletes the Lock File.

The Cached version will remain out-of-date, and as a

result the freshness-test will fail again when the

harvester re-issues the OAI-PMH request after the

Retry-After period. The process described in Section

4.1 will start from scratch. Eventually, the harvester

may decide to give up, or the Static Repository may

become accessible. It can be anticipated that the

Gateway would maintain the fetching history of Static

Repositories, and decide to remove some from its

Cache and Friends list based on a history that reveals

an unacceptable level of inaccessibility.

• If fetching is successful, the Daemon proceeds to

validating the fetched Static Repository. During the

validation process, the Daemon updates the status of

the Lock File at several points. If the fetched file is a

valid Static Repository, its content is used to replace

the existing Cached version. The date/time of most

recent caching is updated. If no Cached version exists

yet, it is created, and the date/time of first and most

recent caching is recorded. After doing so, the Daemon

removes the Lock File from the Lock Zone. When the

harvester returns after the Retry-After period, it is most

likely that a response can be generated from the Cache,

since chances are high that the freshness-test to be

performed for the re-issued request will reveal that the

Cached version is still up-to-date. If the fetched file

turns out not to be a valid Static Repository, a flag is

set in the GDBM database for that Static Repository.

Again, the date/time of most recent caching is updated.

If no Cached version exists for the fetched invalid

Static Repository, it is created. Its only content will be

the “invalid” flag, and the date/time of first and most

recent caching. Once the “invalid” flag is recorded, the

Daemon removes the Lock File from the Lock Zone.

When the harvester returns after the Retry-After

period, a HTTP status-code 502 (Bad Gateway)

response can most likely be generated based on the

existing invalid flag in the Cache, since chances are

high that the freshness-test to be performed for the re-

issued request will reveal that the invalid Cached

version is still the up-to-date version of the Static

Repository.

5. Discussion
Static Repositories made available through our Gateway

pass the validation tests of both the OAI Repository

Explorer [11, 12] and the OAI Registry [6].

The current implementation takes some basic precautions

inspired by the security considerations listed in the Static

Repository specification [16]. For example, an upper limit

is imposed on the total amount of Static Repositories that

can be Cached and processed at a given point in time, on

the size of Cached Static Repositories, as well as on the

size of responses sent to harvesters.

In order to guarantee accuracy of responses to harvesting

requests our implementation has paid special attention to

the actual implementation of the freshness-test. Web

servers on which Static Repositories are made available

may operate in other time zones than the Gateway, and are

not necessarily synchronized to an Internet time-server.

Therefore, using the Gateway’s time when issuing an If-

Modified-Since HTTP HEAD request may lead to

significant inaccuracy of the freshness-test. In order to

resolve this problem, our implementation stores the content

of the Web server’s Last-Modified header field in the

GDBM database of the Static Repository, and uses that

information in a subsequent freshness-test. As such, the

freshness-test is always performed according to the Web

server’s time.

Our Gateway implementation was written in C and tested

on a 500 Mhz Redhat Linux 7.3. Processing and Caching

fetched Static Repositories takes less than 1 second for

small XML files, 2 seconds for 2 Mb files, and 20 seconds

for Static Repositories that reach our upper limit of 20 Mb.

All operations performed on a fetched Static Repository

occur in a reserved address space of 2 Mb of RAM.

Therefore, 2 Mb is also the upper limit to the size of an

individual metadata record that can be processed by our

current implementation. Little robust information can be

given on the time required to fetch Static Repositories, as

those are dependent on the size of the XML file, and are

subject to network conditions. In our testing environment,

performing freshness-tests has typically taken between one

and two seconds. The time to perform a freshness-test is

relevant in that it is good indication of the maximum

amount of time a harvester must wait for a response to an

OAI-PMH request:

• If a freshness-test reveals that the Cache is still up-to-

date, generating a response from Cache requires a little

extra time due to the deconstructed manner in which

Static Repositories are Cached.

• If a freshness-test reveals that the Cache is out-of-date

the HTTP status-code of 503 (Service Unavailable)

can be sent immediately.

The only occasion at which responding to a harvester takes

longer is when the Web server on which the Static

Repository is available fails to respond. Our

implementation generates an HTTP status-code of 504

(Gateway Timeout) after having waited for 30 seconds.

6. Conclusions
Our research into devising an approach to further lower the

barrier for data providers to share metadata collections in

an OAI-PMH environment led us into two directions. Both

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:09 from IEEE Xplore. Restrictions apply.

directions are based on the data provider making its

metadata collection available on a Web server as an XML

file of a specific format.

In the “dependent data provider approach” detailed in this

paper, data providers rely on the services of a gateway

operated by a third party to make metadata collections

harvestable. The barrier for sharing data via the OAI-PMH

is lowered significantly in that the task of data providers

consists of creating and updating an XML file containing

their metadata records, placing the file on a Web server and

“registering” it with a Static Repository Gateway. This

approach depends on the actual deployment of such

Gateways. In order to guarantee accuracy of the data

harvested through a Gateway the specification of its

behavior is quite strict, and therefore adequate care must be

taken when creating an actual Gateway implementation.

Nevertheless, our experiment revealed that no significant

hurdles are involved in an actual implementation that could

keep parties from stepping forward to create and deploy

robust Gateway software.

At the time of writing, both the OAI Implementation

Guideline on Static Repositories and our Gateway

implementation are in alpha phase, with feedback on both

being gathered from selected parties. Based on the attention

our work has attracted so far, it is anticipated that parties

that are likely to start exposing metadata via a Static

Repository approach will emerge in a variety of

communities. The OLAC Community has indicated interest

in migrating to the generic Static Repository approach;

union catalog projects in Belgium, Brazil, and the United

States are considering adoption; and institutions

collaborating with the Digital Library Federation and the

National Science Digital Library project are exploring the

use of this low-barrier approach as a means to significantly

increase the amount of metadata records they make

harvestable at limited expense.

 In the “autonomous data provider approach” on which this

paper only briefly touches, data providers use an XSL style

sheet – which could be provided by the OAI – to respond

to OAI-PMH requests. Their task consists of creating and

updating an XML file containing their metadata records,

and placing both the XML file and the XSL style sheet on

their Web server. Not only does this approach significantly

lower the barrier for sharing metadata collections through

the OAI-PMH, it also turns the target group of low-barrier

data providers into autonomous operators of OAI

repositories. While truly promising, we decided that this

approach was not ready for deployment to our target group

due to the status of technologies required in the solution.

Deployment may however become feasible and attractive

in the near future.

7. Acknowledgments
The authors wish to thank Carl Lagoze, Michael Nelson,

and Simeon Warner for invaluable input in the process of

specifying the OAI Static Repository Implementation

Guideline. The authors are grateful for the most inspiring

ViDa work of Steven Bird and Gary Simons on behalf of

the OLAC Community. Thanks to Beth Goldsmith, Rick

Luce, and Thorsten Schwander for feedback.

8. References
[1] Free Software Foundation. GDBM.

http://www.gnu.org/software/gdbm/gdbm.html

[2] Ginsparg, P., Luce, R., and Van de Sompel, H. The Open

Archives Initiative aimed at the further promotion of author

self-archived solutions, 1999.

http://www.openarchives.org/meetings/SantaFe1999/ups-

invitation-ori.htm

[3] Lagoze, C. and Van de Sompel, H. The Open Archives

Initiative: Building a low-barrier interoperability

framework… in Proceedings on ACM/IEEE Joint

Conference on Digital Libraries (Roanoke VA, June 2001),

ACM Press, 54-62.

http://doi.acm.org/10.1145/379437.379449

[4] Lagoze, C., Van de Sompel, H., Nelson, M., and Warner, S.

The Open Archives Initiative Protocol for Metadata

Harvesting - Version 2.0, 2002

http://www.openarchives.org/OAI_protocol/openarchivespro

tocol.html

[5] Lagoze, C., Van de Sompel, H., Nelson, M., and Warner, S.

Implementation Guildelines for the Open Archvies Initiative

for Metadata Harvesting: XML Schema for repositories to

list confederate repositories, 2002

http://www.openarchives.org/OAI/2.0/guidelines-friends.htm

[6] The Open Archives Initiative. Registering as a Data

Provider.

http://www.openarchives.org/data/registerasprovider.html

[7] The Open Archives Initiative. The Santa Fe Convention,

2001. http://www.openarchives.org/sfc/sfc_entry.htm

[8] The Open Language Archives Community. How to become

an OLAC data provider. http://www.language-

archives.org/docs/implement.html

[9] Reich, V. and Rosenthal D. LOCKSS: A Permanent Web

Publishing and Access System. D-Lib Magazine, 7 (6), 2001.

http://www.dlib.org/dlib/june01/reich/06reich.html

[10] Simons, G. and Bird, S. Building an Open Language

Archives Community on the OAI Foundation, 2003. Library

Hi Tech, 21(2). To appear.

[11] Suleman H. Enforcing interoperability with the open

archives initiative repository explorer… in Proceedings on

ACM/IEEE Joint Conference on Digital Libraries (Roanoke

VA, June 2001), ACM Press, 63-64.

http://doi.acm.org/10.1145/379437.379450

[12] Suleman H. The OAI-PMH Repository Explorer.

http://www.purl.org/NET/oai_explorer

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:09 from IEEE Xplore. Restrictions apply.

[13] Van de Sompel, H. and Lagoze, C. The Santa Fe Convention

of the Open Archives Initiative. D-Lib Magazine, 6 (2),

2000. http://www.dlib.org/dlib/february00/vandesompel-

oai/02vandesompel-oai.html

[14] Van de Sompel, H. and Lagoze, C. The Open Archives

Initiative Protocol for Metadata Harvesting - Version 1.0,

2001.

http://www.openarchives.org/OAI/1.0/openarchivesprotocol.

htm

[15] Van de Sompel, H. and Lagoze, C. Notes from the

Interoperability Front: A Progress Report from the Open

Archives Initiative. Lecture Notes in Computer Science,

2458: Proceedings of ECDL 2002 (Rome Italy, September

2002), Springer Verlag, 144-157

[16] Van de Sompel, H., Lagoze, C., Nelson, M., and Warner, S.

Implementation Guidelines for the Open Archives Initiative

for Metadata Harvesting: The OAI Static Repository and

Static Repository Gateway, 2002

http://www.openarchives.org/OAI/2.0/guidelines-static-

repository.htm

[17] Van de Sompel, H. and Jerez, H. XML Schema defining the

OAI Static Repository format, 2002

http://www.openarchives.org/OAI/2.0/static-repository.xsd

[18] Van de Sompel, H. XML Schema for validating responses to

OAI-PMH requests, 2002

http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd

9. Appendix
Table 1 shows an OAI Static Repository, which supports

two Metadata Formats (oai_dc and oai_rfc1807). It

contains metadata about a single resource. That metadata is

provided in both Metadata Formats. Note the

metadataPrefix attribute that extends the ListRecords

element from the OAI-PMH XML Namespace [18]. To

improve readability, XML Namespace declarations are not

shown in the sample Static Repository.

Table 1: An OAI Static Repository

<?xml version="1.0" encoding="UTF-8"?>

<Repository>

 <Identify>

 <oai:repositoryName>Demo</oai:repositoryName>

 <oai:baseURL>http://an.oai.org/ma/mini.xml</oai:baseURL>

 <oai:protocolVersion>2.0</oai:protocolVersion>

 <oai:adminEmail>jondoe@oai.org</oai:adminEmail>

 <oai:earliestDatestamp>2002-09-19</oai:earliestDatestamp>

 <oai:deletedRecord>no</oai:deletedRecord>

 <oai:granularity>YYYY-MM-DD</oai:granularity>

 </Identify>

 <ListMetadataFormats>

 <oai:metadataFormat>

 <oai:metadataPrefix>oai_dc</oai:metadataPrefix>

 <oai:schema>

 http://www.openarchives.org/OAI/2.0/oai_dc.xsd

 </oai:schema>

 <oai:metadataNamespace>

 http://www.openarchives.org/OAI/2.0/oai_dc/

 </oai:metadataNamespace>

 </oai:metadataFormat>

<oai:metadataFormat>

 <oai:metadataPrefix>oai_rfc1807</oai:metadataPrefix>

 <oai:schema>

 http://www.openarchives.org/OAI/1.1/rfc1807.xsd

 </oai:schema>

 <oai:metadataNamespace>

 http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1807.txt

 </oai:metadataNamespace>

 </oai:metadataFormat>

 </ListMetadataFormats>

 <ListRecords metadataPrefix="oai_dc">

 <oai:record>

 <oai:header>

 <oai:identifier>oai:an.oai.org:0112017</oai:identifier>

 <oai:datestamp>2003-01-17</oai:datestamp>

 </oai:header>

 <oai:metadata>

 <oai_dc:dc>

 <dc:title>Structural Metadata</dc:title>

 <dc:creator>Smith, Hector</dc:creator>

 <dc:subject>Digital Libraries</dc:subject>

 <dc:date>2001-12-14</dc:date>

 </oai_dc:dc>

 </oai:metadata>

 </oai:record>

 </ListRecords>

 <ListRecords metadataPrefix="oai_rfc1807">

 <oai:record>

 <oai:header>

 <oai:identifier>oai:an.oai.org:0112017</oai:identifier>

 <oai:datestamp>2002-01-15</oai:datestamp>

 </oai:header>

 <oai:metadata>

 <oai_rfc1897:rfc1807>

 <rfc1807:bib-version>v2</rfc1807:bib-version>

 <rfc1807:id>0112017</rfc1807:id>

 <rfc1807:entry>January 15, 2002</rfc1807:entry>

 <rfc1807:title>Structural Metadata</ rfc1807:title>

 <rfc1807:author>Hector Smith</rfc1807:author>

 <rfc1807:date>December 14, 2001</rfc1807:date>

 </oai_rfc1897:rfc1807>

 </oai:metadata>

 </oai:record>

 </ListRecords>

</Repository>

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:09 from IEEE Xplore. Restrictions apply.

